8849

GPUfs: Integrating a File System with GPUs

Mark Silberstein, Bryan Ford, Idit Keidar, Emmett Witchel
University of Texas at Austin
Eighteenth International Conference on Architectural Support for Programming Languages and Operating Systems, 2013
@article{silberstein2013gpufs,

   title={GPUfs: Integrating a File System with GPUs},

   author={Silberstein, M. and Ford, B. and Keidar, I. and Witchel, E.},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

1893

views

As GPU hardware becomes increasingly general-purpose, it is quickly outgrowing the traditional, constrained GPU-as-coprocessor programming model. To make GPUs easier to program and improve their integration with operating systems, we propose making the host’s file system directly accessible to GPU code. GPUfs provides a POSIX-like API for GPU programs, exploits GPU parallelism for efficiency, and optimizes GPU file access by extending the host CPU’s buffer cache into GPU memory. Our experiments, based on a set of real benchmarks adapted to use our file system, demonstrate the feasibility and benefits of the GPUfs approach. For example, a self-contained GPU program that searches for a set of strings throughout the Linux kernel source tree runs over seven times faster than on an eight-core CPU.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1480817021
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1480817021
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => K4yuCt/egdh2UJQdrmnldjBUCcs=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2079 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: