8852

Exploring Different Automata Representations for Efficient Regular Expression Matching on GPUs

Xiaodong Yu, Michela Becchi
Dept. of Electrical and Computer Engineering, University of Missouri, Columbia, MO
18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP 2013), 2013
@article{yu2013exploring,

   title={Exploring Different Automata Representations for Efficient Regular Expression Matching on GPUs},

   author={Yu, X. and Becchi, M.},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

513

views

Regular expression matching is a central task in several networking (and search) applications and has been accelerated on a variety of parallel architectures. All solutions are based on finite automata (either in deterministic or non-deterministic form), and mostly focus on effective memory representations for such automata. Recently, a handful of work has proposed efficient regular expression matching designs for GPUs; however, most of them aim at achieving good performance on small datasets. Nowadays, practical solutions must support the increased size and complexity of real world datasets. In this work, we explore the deployment and optimization of different GPU designs of regular expression matching engines, focusing on large datasets containing a large number of complex patterns.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

147 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1229 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: