Exploring Different Automata Representations for Efficient Regular Expression Matching on GPUs

Xiaodong Yu, Michela Becchi
Dept. of Electrical and Computer Engineering, University of Missouri, Columbia, MO
18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP 2013), 2013


   title={Exploring Different Automata Representations for Efficient Regular Expression Matching on GPUs},

   author={Yu, X. and Becchi, M.},



Download Download (PDF)   View View   Source Source   



Regular expression matching is a central task in several networking (and search) applications and has been accelerated on a variety of parallel architectures. All solutions are based on finite automata (either in deterministic or non-deterministic form), and mostly focus on effective memory representations for such automata. Recently, a handful of work has proposed efficient regular expression matching designs for GPUs; however, most of them aim at achieving good performance on small datasets. Nowadays, practical solutions must support the increased size and complexity of real world datasets. In this work, we explore the deployment and optimization of different GPU designs of regular expression matching engines, focusing on large datasets containing a large number of complex patterns.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1481346148
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1481346148
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => LZrYi8N6DDlJyeBSH6DrrtwS75w=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2081 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: