8860

Particle method on GPU

Jean-Matthieu Etancelin, Georges-Henri Cottet, Christophe Picard, Franck Perignon
Laboratoire Jean Kuntzmann (LJK), Universite Joseph Fourier – Grenoble I – Universite Pierre Mendes-France – Grenoble II – Institut Polytechnique de Grenoble – Grenoble Institute of Technology
hal-00780565, 24 January 2013
@unpublished{etancelin:hal-00780565,

   hal_id={hal-00780565},

   url={http://hal.archives-ouvertes.fr/hal-00780565},

   title={Particle method on GPU},

   author={Etancelin, Jean-Mathieu and Cottet, Georges-Henri and Picard, Christophe and P{‘e}rignon, Franck},

   keywords={particle method, advection equation, GPU, opencl, python},

   language={Anglais},

   affiliation={Laboratoire Jean Kuntzmann – LJK},

   note={CANUM 2012. To appear in ESAIM Proceedings},

   year={2013},

   month={Sep},

   pdf={http://hal.archives-ouvertes.fr/hal-00780565/PDF/ms_PM_GPU.pdf}

}

Download Download (PDF)   View View   Source Source   

387

views

In this article we present a graphics processing unit (GPU) implementation of a particle method for transport equations. More precisely the numerical method under consideration is a remeshed particle method. Not only remeshing particles makes simulations more accurate in flows with strong strain, but it leads to algorithms more regular in term of data structures. In this work, we develop a Python library using GPU through OpenCL standard that implements this remeshed particle method which already shows interesting performances.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

184 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1311 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: