XKaapi: A Runtime System for Data-Flow Task Programming on Heterogeneous Architectures

Thierry Gautier, Joao V. F. Lima, Nicolas Maillard, Bruno Raffin
Grenoble University, France
27th IEEE International Parallel & Distributed Processing Symposium (IPDPS), 2013

   title={XKaapi: A Runtime System for Data-Flow Task Programming on Heterogeneous Architectures},

   author={Gautier, T. and Lima, J.V.F. and Maillard, N. and Raffin, B.},



Most recent HPC platforms have heterogeneous nodes composed of multi-core CPUs and accelerators, like GPUs. Programming such nodes is typically based on a combination of OpenMP and CUDA/OpenCL codes; scheduling relies on a static partitioning and cost model. We present the XKaapi runtime system for data-flow task programming on multi-CPU and multi-GPU architectures, which supports a data-flow task model and a localityaware work stealing scheduler. XKaapi enables task multiimplementation on CPU or GPU and multi-level parallelism with different grain sizes. We show performance results on two dense linear algebra kernels, matrix product (GEMM) and Cholesky factorization (POTRF), to evaluate XKaapi on a heterogeneous architecture composed of two hexa-core CPUs and eight NVIDIA Fermi GPUs. Our conclusion is two-fold. First, fine grained parallelism and online scheduling achieve performance results as good as static strategies, and in most cases outperform them. This is due to an improved work stealing strategy that includes locality information; a very light implementation of the tasks in XKaapi; and an optimized search for ready tasks. Next, the multi-level parallelism on multiple CPUs and GPUs enabled by XKaapi led to a highly efficient Cholesky factorization. Using eight NVIDIA Fermi GPUs and four CPUs, we measure up to 2.43 TFlop/s on double precision matrix product and 1.79 TFlop/s on Cholesky factorization; and respectively 5.09 TFlop/s and 3.92 TFlop/s in single precision.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: