8881

Parallelization of the QR Decomposition with Column Pivoting Using Column Cyclic Distribution on Multicore and GPU Processors

Andres Tomas, Zhaojun Bai, Vicente Hernandez
Department of Computer Science, University of California, Davis, CA 95616, USA
10th International Meeting on High-Performance Computing for Computational Science (VECPAR 2012), 2012
@article{tomas2012parallelization,

   title={Parallelization of the QR Decomposition with Column Pivoting Using Column Cyclic Distribution on Multicore and GPU Processors},

   author={Tom{‘a}s, A. and Bai, Z. and Hern{‘a}ndez, V.},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

318

views

The QR decomposition with column pivoting (QRP) of a matrix is widely used for numerical rank revealing in applications. The performance of LAPACK implementation (DGEQP3) of the Householder QRP algorithm is limited by Level 2 BLAS operations required for updating the column norms. In this paper, we propose an implementation of the QRP algorithm using a distribution of the matrix columns in a round-robin fashion for better data locality and parallel memory bus utilization on multicore architectures. Our performance results show a 60% improvement over the routine DGEQP3 of Intel MKL (version 10.3) on a 12 core Intel Xeon X5670 machine. In addition, we show that the same data distribution is also suitable for general purpose GPU processors, where our implementation obtains up to 90 GFlops on a NVIDIA GeForce GTX480. This is about 2 times faster than the QRP implementation of MAGMA (version 1.2.1).
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

127 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1189 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: