Vortex Methods for Fluid Simulation in Computer Graphics

Vines Neuwirth, Mauricio Alfredo
School of Electrical Engineering and Computer Science, Faculty of Engineering, University of Ottawa
University of Ottawa, 2013

   title={Vortex Methods for Fluid Simulation in Computer Graphics},

   author={Neuwirth, M.A.V.},


   school={University of Ottawa}


Download Download (PDF)   View View   Source Source   



Fluid simulations for computer graphics applications have attracted the attention of many researchers and practitioners due to the enhanced realism that natural phenomena simulation adds to graphical applications. Vortex methods are receiving increasing attention from the computer graphics community for simple and direct modeling of complex flow phenomena such as turbulence. However, vortex methods have not been developed yet to the level of other techniques for fluid simulation in computer graphics. In this work we present a novel simulation framework to model inviscid flows using Lagrangian vortex particle methods. We introduce novel stable methods to solve the vorticity flow equations that produce highly detailed visual fluid simulations. We incorporate the full interplay of solids and fluids in our framework. The coupling between free-form solids, represented by arbitrary surface meshes and fluids simulated with vortex methods, leads to visually rich simulations. Previous vortex simulators only focus on modeling the solid as a boundary for the flow. We model solid boundaries using an extended potential flow at the solid surface coupled with a boundary layer simulation. This allows the accurate simulation of two processes of visual interest. The first is the introduction of surface vorticity in the main flow as turbulence (vortex shedding). The second is the motion of the solid induced by fluid forces, which is calculated from the dynamics of vorticity in the flow and the rate of vorticity creation at solid surfaces. We demonstrate high quality results of our methods simulating flows around solid objects and solid object propulsion due to flows. This work ameliorates one of the important omissions in the development of vortex methods for computer graphics, which is the simulation of two-way coupling of solids and fluids.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

238 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1443 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: