8901

Using Hybrid Shared and Distributed Caching for Mixed-Coherency GPU Workloads

Nasser Anssari
University of Illinois at Urbana-Champaign
University of Illinois at Urbana-Champaign, 2013
@article{hwu2013using,

   title={Using hybrid shared and distributed caching for mixed-coherency GPU workloads},

   author={Hwu, W.W.},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

371

views

Current GPU computing models support a mixture of coherent and incoherent classes of memory operations. Workloads using these models typically have working sets too large to fit in an economical SRAM structure. Still, GPU architectures have last-level caches to primarily fulfill two functions: eliminate redundant DRAM accesses servicing requests from different L1 caches to the same line, and maintain on-chip memory coherence for the coherent class of memory operations. In this thesis, we propose an alternative memory system design for GPU architectures better fit for their workloads. Our architectural design features a directory-like sharing tracker that allows the incoherent private L1 caches to directly satisfy remote requests for shared data. It also retains a shared L2 cache with a customized caching policy to support coherent accesses on-chip and better serve non-coalesced requests that contend aggressively for cache lines. This thesis characterizes the novel and intriguing tradeoffs between the components of our proposed memory system design for area, energy, and performance. We show that the proposed design achieves a 22% average reduction in DRAM data demand over a standard GPU architecture with 1MB L2 cache, leading to an overall 28% reduction in the memory system energy consumption on average. Conversely, our results show that the DRAM data demand of the proposed design with 256KB L2 cache is on par with a standard GPU architecture with 1MB L2 cache, albeit at a smaller area overhead and power leakage. Our results, while drawn on motivations from the GPU realm, are not architecture-specific and can be extended to other throughput-oriented many-core organizations.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

128 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1189 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: