8903

Document Stream Clustering using GPUs

Michael J. Szaszy, Hanan Samet
Department of Computer Science, University of Maryland, College Park, MD 20742
University of Maryland, 2013
@article{samet2013document,

   title={Document Stream Clustering using GPUs},

   author={Samet, M.J.S.H.},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

404

views

The Web is constantly generating streams of textual information in the form of News articles and Tweets. In order for Information Retrieval systems to make sense of all this data partitional clustering algorithms are used to create groups of similar documents. Traditional clustering algorithms, like K-means, are not well suited for stream processing where the dataset is constantly changing as new documents are published. In this paper we present a clustering algorithm designed to work with streaming documents. These documents, described by their TF-IDF (term frequency – inverse document frequency) [15] term vectors, are incrementally generated appropriate clusters based on the cosine similarity metric. We provide an efficient implementation of this algorithm on a GPU using CUDA, that achieves speedups of over 43X compared to its serial CPU implementation and has the ability to cluster a document within just .01 seconds after its term vector is received, even when there are 1.6 million clusters. Our implementation is capable to scale to clustering 5.5 million documents using a single GTX 480 GPU in 16.1 hours and can easily be extended to run on a system containing large numbers of GPUs.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

137 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1209 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: