A Networked Dataflow Simulation Environment for Signal Processing and Data Mining Applications

Stephen Won
Department of Electrical and Computer Engineering, University of Maryland at College Park
University of Maryland at College Park, 2012

   title={A Networked Dataflow Simulation Environment for Signal Processing and Data Mining Applications},

   author={Won, Stephen Min},



Download Download (PDF)   View View   Source Source   



In networked signal processing systems, dataflow graphs can be used to describe the processing on individual network nodes. However, to analyze the correctness and performance of these systems, designers must understand the interactions across these individual "node-level" dataflow graphs — as they communicate across the network – in addition to the characteristics of the individual graphs. In this thesis, we present a novel simulation environment, called the NS-2 – TDIF SIMulation environment (NT-SIM). NT-SIM provides integrated co-simulation of networked systems and combines the network analysis capabilities provided by the Network Simulator (ns) with the scheduling capabilities of a dataflow-based framework, thereby providing novel features for more comprehensive simulation of networked signal processing systems. Through a novel integration of advanced tools for network and dataflow graph simulation, our NT-SIM environment allows comprehensive simulation and analysis of networked systems. We present two case studies that concretely demonstrate the utility of NT-SIM in the contexts of a heterogeneous signal processing and data mining system design.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1666 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

338 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: