pROST : A Smoothed Lp-norm Robust Online Subspace Tracking Method for Realtime Background Subtraction in Video

Florian Seidel, Clemens Hage, Martin Kleinsteuber
Department of Informatics, Technische Universitat Munchen, Boltzmannstr. 3, 85748 Garching, Germany
arXiv:1302.2073 [cs.CV], (8 Feb 2013)

   author={Seidel}, F. and {Hage}, C. and {Kleinsteuber}, M.},

   title={"{pROST : A Smoothed Lp-norm Robust Online Subspace Tracking Method for Realtime Background Subtraction in Video}"},

   journal={ArXiv e-prints},




   keywords={Computer Science – Computer Vision and Pattern Recognition},




   adsnote={Provided by the SAO/NASA Astrophysics Data System}


Download Download (PDF)   View View   Source Source   



An increasing number of methods for background subtraction use Robust PCA to identify sparse foreground objects. While many algorithms use the L1-norm as a convex relaxation of the ideal sparsifying function, we approach the problem with a smoothed Lp-norm and present pROST, a method for robust online subspace tracking. The algorithm is based on alternating minimization on manifolds. Implemented on a graphics processing unit it achieves realtime performance. Experimental results on a state-of-the-art benchmark for background subtraction on real-world video data indicate that the method succeeds at a broad variety of background subtraction scenarios, and it outperforms competing approaches when video quality is deteriorated by camera jitter.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1477697160
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1477697160
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => yA3wmDGf5jIrWeG6RxMjqfOMWuc=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2038 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: