Scheduling a Parallel Sparse Direct Solver to Multiple GPUs

Kyungjoo Kim
Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA
The 14th IEEE Workshop on Parallel and Distributed Scientific and Engineering Computing, 2013

   title={Scheduling a Parallel Sparse Direct Solver to Multiple GPUs},

   author={Kim, Kyungjoo and Eijkhout, Victor},



We present a sparse direct solver using multilevel task scheduling on a modern heterogeneous compute node consisting of a multi-core host processor and multiple GPU accelerators. Our direct solver is based on the multifrontal method, which is characterized by exploiting dense subproblems (fronts) related in an assembly tree. Critical to high performance of the solver is dynamic task allocation to account for the asymmetric performance of heterogeneous devices. Device-specific tasks are generated and adapted to different devices on the course of multifrontal factorization using multi-level matrix partitioning. Large blocks are used to provide coarse grain tasks for fast devices, and some of the blocks are recursively partitioned to supply fine-grained tasks for the next available (slower) devices. Experimental results are obtained from particular problems arising from a high order Finite Element Method.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1666 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

339 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: