8963

A Parallel Active-Set Method for Solving Frictional Contact Problems

Joshua Alexander Litven
The University of British Columbia, Vancouver
The University of British Columbia, 2012
@phdthesis{litven2012parallel,

   title={A Parallel Active-Set Method for Solving Frictional Contact Problems},

   author={Litven, Joshua Alexander},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

301

views

Simulating frictional contact is a challenging computational task and there exist a variety of techniques to do so. One such technique, the staggered projections algorithm, requires the solution of two convex quadratic program (QP) subproblems at each iteration. We introduce a method, SCHURPA, which employs a primal-dual active-set strategy to efficiently solve these QPs based on a Schur-complement method. A single factorization of the initial saddle point system and a smaller dense Schur-complement is maintained to solve subsequent saddle point systems. Exploiting the parallelizability and warm-starting capabilities of the active-set method as well as the problem structure of the QPs yields a novel approach to the problem of frictional contact. Numerical results of a parallel GPU implementation using NVIDIA’s CUDA applied to a physical simulator of highly deformable bodies are presented.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

149 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1239 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: