Full Covariance Gaussian Mixture Models Evaluation on GPU

Jan Vanek, Jan Trmal, Josef V. Psutka, Josef Psutka
Department of Cybernetics, University of West Bohemia, Univerzitni 8, 306 14 Plzen, Czech Republic
IEEE International Symposium on Signal Processing and Information Technology, 2012
@inproceedings{VanekJ_2012_FullCovariance,

   author={Vanv{e}k J. and Trmal J. and Psutka J. V. and Psutka J.},

   title={Full Covariance Gaussian Mixture Models Evaluation on GPU},

   year={2012},

   journal={IEEE International Symposium on Signal Processing and Information Technology},

   address={Vietnam, Ho Chi Minh City},

   ISBN={978-1-4673-5604-6},

   url={http://www.kky.zcu.cz/en/publications/VanekJ_2012_FullCovariance}

}

Download Download (PDF)   View View   Source Source   
Gaussian mixture models (GMMs) are often used in various data processing and classification tasks to model a continuous probability density in a multi-dimensional space. In cases, where the dimension of the feature space is relatively high (e.g. in the automatic speech recognition (ASR)), GMM with a higher number of Gaussians with diagonal covariances (DC) instead of full covariances (FC) is used from the two reasons. The first reason is a problem how to estimate robust FC matrices with a limited training data set. The second reason is a much higher computational cost during the GMM evaluation. The first reason was addressed in many recent publications. In contrast, this paper describes an efficient implementation on Graphic Processing Unit (GPU) of the FC-GMM evaluation, which addresses the second reason. The performance was tested on acoustic models for ASR, and it is shown that even a low-end laptop GPU is capable to evaluate a large acoustic model in a fraction of the real speech time. Three variants of the algorithm were implemented and compared on various GPUs: NVIDIA CUDA, NVIDIA OpenCL, and ATI/AMD OpenCL.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

You must be logged in to post a comment.

* * *

* * *

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 11.4
  • SDK: AMD APP SDK 2.8
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 5.0.35, AMD APP SDK 2.8

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hgpu.org