9010

GPU based Eulerian Assembly of Genomes

Syed Faraz Mahmood
George Mason University
George Mason University, 2013
@phdthesis{mahmood2013gpu,

   title={GPU based Eulerian Assembly of Genomes},

   author={Mahmood, Syed Faraz},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

414

views

Advances in sequencing technologies have revolutionized the field of genomics by providing cost effective and high throughput solutions. In this paper, we develop a parallel sequence assembler implemented on general purpose graphic processor units (GPUs). Our work was largely motivated by a growing need in the genomic community for sequence assemblers and increasing use of GPUs for general purpose computing applications. We investigated the implementation challenges, and possible solutions for a data parallel approach for sequence assembly. We implemented an Eulerian-based sequence assembler (GPU-Euler) on the nVidia GPUs using the CUDA programming interface. GPU-Euler was benchmarked on three bacterial genomes using input reads representing the new generation of sequencing approaches. Our empirical evaluation showed that GPU-Euler produced lower run times, and comparable performance in terms of contig length statistics to other serial assemblers. We were able to demonstrate the promise of using GPUs for genome assembly, a computationally intensive task. An error correction step was also incorporated into GPU-Euler to be able to process reads containing some errors. Error correction output was benchmarked on simulated read on three bacterial genomes with different read length.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

168 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1275 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: