Speeding Up Model Building for ECGA on CUDA Platform

Chung-Yu Shao, Tian-Li Yu
Taiwan Evolutionary Intelligence Laboratory (TEIL), Department of Electrical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
TEIL Technical Report No. 2013002, 2013

   title={Speeding Up Model Building for ECGA on CUDA Platform},

   author={Shao, Chung-Yu and Yu, Tian-Li},



Download Download (PDF)   View View   Source Source   



Parallelization is a straightforward approach to enhance the efficiency for evolutionary computation due to its inherently parallel nature. Since NVIDIA released the compute unified device architecture (CUDA), graphic processing units have enabled lots of scalable parallel programs in a wide range of fields. However, parallelization of model building for EDAs is rarely studied. In this paper, we propose two implementations on CUDA to speed up the model building in the extended compact genetic algorithm (ECGA). The first implementation is algorithmically identical to original ECGA. Aiming at a greater speed boost, the second implementation modifies the model building. It slightly decreases the accuracy of models in exchange for more speedup. Empirically, the first implementation achieves a speedup of roughly 233 to the baseline on 250-bit trap problem with order 5, and the second implementation achieves a speedup of roughly 264 to the baseline on the same problem. Finally, both of our implementations scale up to 9,050-bit trap problem with order 5 on one single Tesla C2050 GPU card.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1666 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

339 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: