9021

3D Modeling, Distance and Gradient Computation for Motion Planning: A Direct GPGPU Approach

Rene Wagner, Udo Frese, Berthold Bauml
DLR Institute of Robotics and Mechatronics, 82234 Wessling, Germany
IEEE International Conference on Robotics and Automation (ICRA’13), 2013

@article{wagner3d,

   title={3D Modeling, Distance and Gradient Computation for Motion Planning: A Direct GPGPU Approach},

   author={Wagner, Ren{‘e} and Frese, Udo and B{"a}uml, Berthold},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

884

views

The Kinect sensor and KinectFusion algorithm have revolutionized environment modeling. We bring these advances to optimization-based motion planning by computing the obstacle and self-collision avoidance objective functions and their gradients directly from the KinectFusion model on the GPU without ever transferring any model to the CPU. Based on this, we implement a proof-of-concept motion planner which we validate in an experiment with a 19-DOF humanoid robot using real data from a tabletop work space. The summed-up time from taking the first look at the scene until the planned path avoiding an obstacle on the table is executed is only three seconds.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Recent source codes

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1488113953
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1488113953
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => B9giQlMRCme4mryVD9CUrnauQf0=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2172 peoples are following HGPU @twitter

HGPU group © 2010-2017 hgpu.org

All rights belong to the respective authors

Contact us: