9061

Efficient GPU implementation of the integral histogram

Mahdieh Poostchi, Kannappan Palaniappan, Filiz Bunyak, Michela Becchi, Guna Seetharaman
Dept. of Computer Science, University of Missouri-Columbia, Columbia, Missouri Air Force Research Laboratory, Rome, NY 13441, USA
Workshop on Developer-Centred Computer Vision, LNCS ACCV, 2012
@inproceedings{poostchi2012efficient,

   title={Efficient GPU implementation of the integral histogram},

   author={Poostchi, Mahdieh and Palaniappan, Kannappan and Bunyak, Filiz and Becchi, Michela and Seetharaman, Guna},

   booktitle={LNCS ACCV, Workshop on Developer-Centred Computer Vision},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

867

views

The integral histogram for images is an efficient preprocessing method for speeding up diverse computer vision algorithms including object detection, appearance-based tracking, recognition and segmentation. Our proposed Graphics Processing Unit (GPU) implementation uses parallel prefix sums on row and column histograms in a cross-weave scan with high GPU utilization and communication-aware data transfer between CPU and GPU memories. Two different data structures and communication models were evaluated. A 3-D array to store binned histograms for each pixel and an equivalent linearized 1-D array, each with distinctive data movement patterns. Using the 3-D array with many kernel invocations and low workload per kernel was inefficient, highlighting the necessity for careful mapping of sequential algorithms onto the GPU. The reorganized 1-D array with a single data transfer to the GPU with high GPU utilization, was 60 times faster than the CPU version for a 1K x 1K image reaching 49 fr/sec and 21 times faster for 512 x 512 images reaching 194 fr/sec. The integral histogram module is applied as part of the likelihood of features tracking (LOFT) system for video object tracking using fusion of multiple cues.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Recent source codes

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1472092776
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1472092776
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => 0pFAC91Lqx0m877okoOdq+H7AhI=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1966 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: