9080

General Purpose Computation on Graphics Processing Units Using OpenCL

Fiaz Gul Khan
Politecnico di Torino
Politecnico di Torino, 2013
@phdthesis{khan2013general,

   title={General Purpose Computation on Graphics Processing Units Using OpenCL},

   author={Khan, Fiaz Gul},

   year={2013},

   school={Politecnico di Torino}

}

Download Download (PDF)   View View   Source Source   

495

views

Computational Science has emerged as a third pillar of science along with theory and experiment, where the parallelization for scientific computing is promised by different shared and distributed memory architectures such as, super-computer systems, grid and cluster based systems, multi-core and multiprocessor systems etc. In the recent years the use of GPUs (Graphic Processing Units) for General purpose computing commonly known as GPGPU made it an exciting addition to high performance computing systems (HPC) with respect to price and performance ratio. Current GPUs consist of several hundred computing cores arranged in streaming multi-processors so the degree of parallelism is promising. Moreover with the development of new and easy to use interfacing tools and programming languages such as OpenCL and CUDA made the GPUs suitable for different computation demanding applications such as micromagnetic simulations. In micromagnetic simulations, the study of magnetic behavior at very small time and space scale demands a huge computation time, where the calculation of magnetostatic field with complexity of O(Nlog(N)) using FFT algorithm for discrete convolution is the main contribution towards the whole simulation time, and it is computed many times at each time step interval. This study and observation of magnetization behavior at sub-nanosecond time-scales is crucial to a number of areas such as magnetic sensors, non volatile storage devices and magnetic nanowires etc. Since micromagnetic codes in general are suitable for parallel programming as it can be easily divided into independent parts which can run in parallel, therefore current trend for micromagnetic code concerns shifting the computationally intensive parts to GPUs. My PhD work mainly focuses on the development of highly parallel magnetostatic field solver for micromagnetic simulators on GPUs. I am using OpenCL for GPU implementation, with consideration that it is an open standard for parallel programming of heterogeneous systems for cross platform. The magnetostatic field calculation is dominated by the multidimensional FFTs (Fast Fourier Transform) computation. Therefore i have developed the specialized OpenCL based 3D-FFT library for magnetostatic field calculation which made it possible to fully exploit the zero padded input data with out transposition and symmetries inherent in the field calculation. Moreover it also provides a common interface for different vendors’ GPUs. In order to fully utilize the GPUs parallel architecture the code needs to handle many hardware specific technicalities such as coalesced memory access, data transfer overhead between GPU and CPU, GPU global memory utilization, arithmetic computation, batch execution etc. In the second step to further increase the level of parallelism and performance, I have developed a parallel magnetostatic field solver on multiple GPUs. Utilizing multiple GPUs avoids dealing with many of the limitations of GPUs (e.g., on-chip memory resources) by exploiting the combined resources of multiple on board GPUs. The GPU implementation have shown an impressive speedup against equivalent OpenMp based parallel implementation on CPU, which means the micromagnetic simulations which require weeks of computation on CPU now can be performed very fast in hours or even in minutes on GPUs. In parallel I also worked on ordered queue management on GPUs. Ordered queue management is used in many applications including real-time systems, operating systems, and discrete event simulations. In most cases, the efficiency of an application itself depends on usage of a sorting algorithm for priority queues. Lately, the usage of graphic cards for general purpose computing has again revisited sorting algorithms. In this work i have presented the analysis of different sorting algorithms with respect to sorting time, sorting rate and speedup on different GPU and CPU architectures and provided a new sorting technique on GPUs.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

149 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1231 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: