Accelerated Dictionary Learning with GPU/Multicore CPU and Its Application to Music Classification

Boyang Gao, Emmanuel Dellandrea, Liming Chen
Universitede Lyon, CNRS, Ecole Centrale Lyon, LIRIS, UMR5205, F-69134, France
Dans International Conference on Signal Processing (ICSP), 2012

   title={Accelerated Dictionary Learning with GPU/Multicore CPU and its Application to Music Classification},

   author={Boyang {Gao} and Emmanuel {Dellandrea} and Liming {Chen}},



   booktitle={International Conference on Signal Processing (ICSP)},





Download Download (PDF)   View View   Source Source   



K-means clustering and GMM training, as dictionary learning procedures, lie at the heart of many signal processing applications. Increasing data scale requires more efficient ways to perform this process. In this paper a new GPU and multi-core CPU accelerated k-means clustering and GMM training is proposed. We show that both methods can be concisely reformulated into matrix multiplications which allows the application of NVIDIA Compute Unified Device Architecture (CUDA) implemented Basic Linear Algebra Subprograms (CUBLAS) and AMD Core Math Library (ACML) that are highly optimized matrix operation libraries for GPU and multicore CPU. Experimentations on music genre and mood representation and classification have shown that the acceleration for learning dictionary is achieved by factors of 38.0 and 209.5 for k-means clustering and GMM training, compared with single thread CPU execution while the difference between the average classification accuracies is less than 1%.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1580 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

298 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: