A journey from single-GPU to optimized multi-GPU SPH with CUDA

E. Rustico, G. Bilotta, G. Gallo, A. Herault, C. Del Negro, R. A. Dalrymple
Dipartimento di Matematica e Informatica, Universita di Catania, Catania, Italy
7th SPHERIC Workshop, 2012

   title={A journey from single-GPU to optimized multi-GPU SPH with CUDA},

   author={Rustico, E and Bilotta, G and Gallo, G and H{‘e}rault, A and Del Negro, C and Dalrymple, RA},



Download Download (PDF)   View View   Source Source   Source codes Source codes




We present an optimized multi-GPU version of GPUSPH, a CUDA implementation of fluid-dynamics models based on the Smoothed Particle Hydrodynamics (SPH) numerical method. SPH is a well-known Lagrangian model for the simulation of free-surface fluid flows; it exposes a high degree of parallelism and has already been successfully ported to GPU. We extend the GPU-based simulator to exploit multiple GPUs simultaneously, to obtain a gain in speed and overcome the memory limitations of using a single device. The computational domain is spatially split with minimal overlap and shared volume slices are updated at every iteration of the simulation. Data transfers are asynchronous with computations, thus completely covering the overhead introduced by slice exchange. A simple yet effective load balancing policy preserves the performance in case of unbalanced simulations due to asymmetric fluid topologies. The obtained speedup factor closely follows the ideal one and it is possible to run simulations with a higher number of particles than would fit on a single device. efficiency of the parallelization.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1662 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

337 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: