GPU Accelerated Automated Feature Extraction from Satellite Images

K. Phani Tejaswi, D. Shanmukha Rao, Thara Nair, A. V. V. Prasad
National Remote Sensing Centre, Indian Space Research Organization, Hyderabad, India
International Journal of Distributed and Parallel systems (IJDPS), Vol.4, No.2, 2013
@article{tejaswi2013gpu,

   title={GPU ACCELERATED AUTOMATED FEATURE EXTRACTION FROM SATELLITE IMAGES},

   author={Tejaswi, K Phani and Rao, D Shanmukha and Nair, Thara and Prasad, AVV},

   journal={International Journal of Distributed and Parallel systems (IJDPS)},

   volume={4},

   number={2},

   year={2013}

}

Download Download (PDF)   View View   Source Source   
The availability of large volumes of remote sensing data insists on higher degree of automation in feature extraction, making it a need of the hour. Fusing data from multiple sources, such as panchromatic, hyper spectral and LiDAR sensors, enhances the probability of identifying and extracting features such as buildings, vegetation or bodies of water by using a combination of spectral and elevation characteristics. Utilizing the aforementioned features in remote sensing is impracticable in the absence of automation. While efforts are underway to reduce human intervention in data processing, this attempt alone may not suffice. The huge quantum of data that needs to be processed entails accelerated processing to be enabled. GPUs, which were originally designed to provide efficient visualization, are being massively employed for computation intensive parallel processing environments. Image processing in general and hence automated feature extraction, is highly computation intensive, where performance improvements have a direct impact on societal needs. In this context, an algorithm has been formulated for automated feature extraction from a panchromatic or multispectral image based on image processing techniques. Two Laplacian of Guassian (LoG) masks were applied on the image individually followed by detection of zero crossing points and extracting the pixels based on their standard deviation with the surrounding pixels. The two extracted images with different LoG masks were combined together which resulted in an image with the extracted features and edges. Finally the user is at liberty to apply the image smoothing step depending on the noise content in the extracted image. The image is passed through a hybrid median filter to remove the salt and pepper noise from the image. This paper discusses the aforesaid algorithm for automated feature extraction, necessity of deployment of GPUs for the same; system-level challenges and quantifies the benefits of integrating GPUs in such environment. The results demonstrate that substantial enhancement in performance margin can be achieved with the best utilization of GPU resources and an efficient parallelization strategy. Performance results in comparison with the conventional computing scenario have provided a speedup of 20x, on realization of this parallelizing strategy.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

You must be logged in to post a comment.

* * *

* * *

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 11.4
  • SDK: AMD APP SDK 2.8
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 5.0.35, AMD APP SDK 2.8

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hgpu.org