Novel implementations of recursive discrete wavelet transform for real time computation with multicore systems on chip (SOC)

Mohammad Wadood Majid, Golrokh Mirzaei, Mohsin M. Jamali
Department of Electrical Engineering & Computer Science, University of Toledo, Toledo, USA
Science Journal of Circuits, Systems and Signal Processing, 2013, 2(2), 22-28

   title={Novel implementations of recursive discrete wavelet transform for real time computation with multicore systems on chip (SOC)},

   author={Majid, Mohammad Wadood and Mirzaei, Golrokh and Jamali, Mohsin M}


Download Download (PDF)   View View   Source Source   



The discrete wavelet Transform (DWT) has been studied and developed in various scientific and engineering fields. Its multi-resolution and locality nature facilitates application required for progressiveness in capturing high-frequency details. However, when dealing with enormous data volume, the performance may drastically reduce. The multi-resolution sub-band encoding provided by DWT enables for higher compression ratios, and progressive transformation of signals. The widespread usage of the DWT has motivated the development of fast DWT algorithms and their tuning on all sorts of computer systems. However, this transformation comes at the expense of additional computational complexity. Achieving real-time or interactive compression/de-compression speed, therefore, requires a fast implementation of DWT that leverages emerging parallel hardware systems. The recent advancement in the consumer level multicore hardware is equipped with Single Instruction and Multiple Data (SIMD) power.In this study, Parallel Discrete Wavelet Transform has been developed with novel Adaptive Load Balancing Algorithm (ALBA). The DWT is parallelized, partitioned, mapped and scheduled on single core and Multicore. The Parallel DWT is developed in C# for single and Intel Quad cores as well as the combination of C and CUDA is implemented on GPU. This brings the significant performance on a consumer level PC without extra cost.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1666 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

339 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: