9175

Communication-Minimizing 2D Convolution in GPU Registers

Forrest N. Iandola, David Sheffield, Michael Anderson, Phitchaya Mangpo Phothilimthana, Kurt Keutzer
Parallel Computing Laboratory (ParLab), University of California, Berkeley, CA, USA
International Conference on Image Processing (ICIP), 2013
@article{iandola2013communication,

   title={COMMUNICATION-MINIMIZING 2D CONVOLUTION IN GPU REGISTERS},

   author={Iandola, Forrest N and Sheffield, David and Anderson, Michael and Phothilimthana, Phitchaya Mangpo and Keutzer, Kurt},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

705

views

2D image convolution is ubiquitous in image processing and computer vision problems such as feature extraction. Exploiting parallelism is a common strategy for accelerating convolution. Parallel processors keep getting faster, but algorithms such as image convolution remain memory bounded on parallel processors such as GPUs. Therefore, reducing memory communication is fundamental to accelerating image convolution. To reduce memory communication, we reorganize the convolution algorithm to prefetch image regions to register, and we do more work per thread with fewer threads. To enable portability to future architectures, we implement a convolution autotuner that sweeps the design space of memory layouts and loop unrolling configurations. We focus on convolution with small filters (2×2-7×7), but our techniques can be extended to larger filter sizes. Depending on filter size, our speedups on two NVIDIA architectures range from 1.2x to 4.5x over state-of-the-art GPU libraries.
VN:F [1.9.22_1171]
Rating: 5.0/5 (1 vote cast)
Communication-Minimizing 2D Convolution in GPU Registers, 5.0 out of 5 based on 1 rating

* * *

* * *

Like us on Facebook

HGPU group

140 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1217 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: