GPU Accelerated Face Detection (thesis)

Jussi Makela
Department of Computer Science and Engineering, University of Oulu, Oulu, Finland
University of Oulu, 2013

   title={GPU Accelerated Face Detection},

   author={M{"a}kel{"a}, Jussi},



Download Download (PDF)   View View   Source Source   



Graphics processing units have massive parallel processing capabilities, and there is a growing interest in utilizing them for generic computing. One area of interest is computationally heavy computer vision algorithms, such as face detection and recognition. Face detection is used in a variety of applications, for example the autofocus on cameras, face and emotion recognition, and access control. In this thesis, the face detection algorithm was accelerated with GPU using OpenCL. The goal was to gain performance benefit while keeping the implementations functionally equivalent. The OpenCL version was based on optimized reference implementation. The possibilities and challenges in accelerating different parts of the algorithm were studied. The reference and the accelerated implementations are depicted in detail, and performance is compared. The performance was evaluated by runtimes with three sets of four different sized images, and three additional images presenting special cases. The tests were run with two differently set-up computers. From the results, it can be seen that face detection is well suited for GPU acceleration; that is the algorithm is well parallelizable and can utilize efficient texture processing hardware. There are delays related in initializing the OpenCL platform which mitigate the benefit to some degree. The accelerated implementation was found to deliver equal or lower performance when there was little computation; that is the image was small or easily analyzed. With bigger and more complex images, the accelerated implementation delivered good performance compared to reference implementation. In future work, there should be some method of mitigating delays introduced by the OpenCL initialization. This work will have interest in the future when OpenCL acceleration becomes available on mobile phones.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1658 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

335 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: