Supporting Iteration in a Heterogeneous Data Flow Engine

Jon Currey, Simon Baker, Christopher J. Rossbach
Microsoft Research
The 3rd Workshop on Systems for Future Multicore Architectures, 2013

   title={Supporting Iteration in a Heterogeneous Data Flow Engine},

   author={Currey, Jon and Baker, Simon and Rossbach, Christopher J.},



Download Download (PDF)   View View   Source Source   



Dataflow execution engines such as MapReduce, DryadLINQ, and PTask have enjoyed success because they simplify development for a class of important parallel applications. These systems sacrifice generality for simplicity: while many workloads are easily expressed, important idioms like iteration and recursion are difficult to express and support efficiently. We consider the problem of extending a dataflow engine to support data-dependent iteration in a heterogeneous environment, where architectural diversity introduces data migration and scheduling challenges that complicate the problem. We propose constructs that enable a dataflow engine to efficiently support data-dependent control flow in a heterogeneous environment, implement them in a prototype system called IDEA, and use them to implement a variant of optical flow, a well-studied computer vision algorithm. Optical flow relies heavily on nested loops, making it difficult to express without explicit support for iteration. We demonstrate that IDEA enables up to 18x speedup over sequential and 32% speedup over a GPU implementation using synchronous host-based control.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1496 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

255 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: