9196

GPU Computing in Discrete Optimization – Part I: Introduction to the GPU

Andre R. Brodtkorb, Trond R. Hagen, Christian Schulz, Geir Hasle
SINTEF ICT, Dept. of Applied Mathematics, P.O. Box 124 Blindern, NO-0314 Oslo, Norway
EURO Journal of Transportation and Logistics, 2013
@article{brodtkorb2013gpu,

   title={GPU Computing in Discrete Optimization–Part I: Introduction to the GPU},

   author={Brodtkorb, Andr{‘e} R and Hagen, Trond R and Schulz, Christian and Hasle, Geir},

   journal={EURO Journal on Transportation and Logistics},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

651

views

In many cases there is still a large gap between the performance of current optimization technology and the requirements of real world applications. As in the past, performance will improve through a combination of more powerful solution methods and a general performance increase of computers. These factors are not independent. Due to physical limits, hardware development no longer results in higher speed for sequential algorithms, but rather in increased parallelism. Modern commodity PCs include a multi-core CPU and at least one GPU, providing a low cost, easily accessible heterogeneous environment for high performance computing. New solution methods that combine task parallelization and stream processing are needed to fully exploit modern computer architectures and profit from future hardware developments. This paper is the first part of a series of two, where the goal of this first part is to give a tutorial style introduction to modern PC architectures and GPU programming. We start with a short historical account of modern mainstream computer architectures, and a brief description of parallel computing. This is followed by the evolution of modern GPUs, before a GPU programming example is given. Strategies and guidelines for program development are also discussed. Part II gives a broad survey of the existing literature on parallel computing targeted at modern PCs in discrete optimization, with special focus on papers on routing problems. We conclude with lessons learnt, directions for future research, and prospects.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

171 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1282 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: