GPU Computing in Discrete Optimization – Part II: Survey Focused on Routing Problems

Christian Schulz, Geir Hasle, Andre R. Brodtkorb, Trond R. Hagen
SINTEF ICT, Dept. of Applied Mathematics, P.O. Box 124 Blindern, NO-0314 Oslo, Norway
EURO Journal of Transportation and Logistics, 2013

   title={GPU Computing in Discrete Optimization–Part II: Survey Focused on Routing Problems},

   author={Schulz, Christian and Hasle, Geir and Brodtkorb, Andr{‘e} R and Hagen, Trond R},

   journal={EURO Journal on Transportation and Logistics},



Download Download (PDF)   View View   Source Source   



In many cases there is still a large gap between the performance of current optimization technology and the requirements of real world applications. As in the past, performance will improve through a combination of more powerful solution methods and a general performance increase of computers. These factors are not independent. Due to physical limits, hardware development no longer results in higher speed for sequential algorithms, but rather in increased parallelism. Modern commodity PCs include a multi-core CPU and at least one GPU, providing a low cost, easily accessible heterogeneous environment for high performance computing. New solution methods that combine task parallelization and stream processing are needed to fully exploit modern computer architectures and profit from future hardware developments. This paper is the second in a series of two. Part I gives a tutorial style introduction to modern PC architectures and GPU programming. Part II gives a broad survey of the literature on parallel computing in discrete optimization targeted at modern PCs, with special focus on routing problems. We assume that the reader is familiar with GPU programming, and refer the interested reader to Part I. We conclude with lessons learnt, directions for future research, and prospects.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1513 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

260 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: