Fast Makespan Estimation for GPU Threads on a Single Streaming Multiprocessor

Kostiantyn Berezovskyi, Konstantinos Bletsas, Stefan M. Petters
CISTER Research Unit, Polytechnic Institute of Porto (ISEP-IPP), Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072 Porto, Portugal
Technical Report CISTER-TR-130406, 2013


   title={Fast Makespan Estimation for GPU Threads on a Single Streaming Multiprocessor},

   author={Berezovskyi, Kostiantyn and Bletsas, Konstantinos and Petters, Stefan M},


   institution={Technical Report HURRAYTR-111215, CISTER/INESC-TEC, ISEP Research Center, Polytechnic Institute of Porto, Available at http://www. cister. isep. ipp. pt/people/Kostiantyn% 2BBerezovskyi/publications}


Download Download (PDF)   View View   Source Source   



Graphics Processing Units (GPUs) are widely used to unload the CPUs, liberate other resources of a given computer system, and provide an alternative to multiprocessor computers as a means of processing computationally expensive parallel tasks. The recent trend of utilizing GPUs in embedded systems necessitates the development of timing analysis techniques for finding the joint worst-case execution time for a group of GPU threads of the same parallel application, on a streaming multiprocessor. The state-of-the-art approaches for computing the exact maximum makespan of GPU threads running on a single streaming multiprocessor are intractable and even pessimistic approximations usually take a long time to complete. We therefore develop a technique for finding an estimate of the maximum makespan using metaheuristics. Its simplicity, flexibility and ability for massive parallelization, determine a potential of usage for soft real-time systems.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Recent source codes

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1487529849
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1487529849
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => vDZI9VfEZ0Q/qd++MJ7UWcGDXLE=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2169 peoples are following HGPU @twitter

HGPU group © 2010-2017 hgpu.org

All rights belong to the respective authors

Contact us: