Programming Models and Runtimes for Heterogeneous Systems

Max Grossman
Rice University
Rice University, 2013

   title={Programming Models and Runtimes for Heterogeneous Systems},

   author={Grossman, Max},




Download Download (PDF)   View View   Source Source   



With the plateauing of processor frequencies and increase in energy consumption in computing, application developers are seeking new sources of performance acceleration. Heterogeneous platforms with multiple processor architectures offer one possible avenue to address these challenges. However, modern heterogeneous programming models tend to be either so low-level as to severely hinder programmer productivity, or so high-level as to limit optimization opportunities. The novel systems presented in this thesis strike a better balance between abstraction and transparency, enabling programmers to be productive and produce high-performance applications on heterogeneous platforms. This thesis starts by summarizing the strengths, weaknesses, and features of existing heterogeneous programming models. It then introduces and evaluates four novel heterogeneous programming models and runtime systems: JCUDA, CnC-CUDA, DyGR, and HadoopCL. We’ll conclude by positioning the key contributions of each piece in this thesis relative to the state-of-the-art, and outline possible directions for future work.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1513 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

260 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: