9238

GPU Scripting and Code Generation with PyCUDA

Andreas Klockner, Nicolas Pinto, Bryan Catanzaro, Yunsup Lee, Paul Ivanov, Ahmed Fasih
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012
arXiv:1304.5553 [cs.SE], 19 Apr 2013
@article{2013arXiv1304.5553K,

   author={Kl{"o}ckner}, A. and {Pinto}, N. and {Catanzaro}, B. and {Lee}, Y. and {Ivanov}, P. and {Fasih}, A.},

   title={"{GPU Scripting and Code Generation with PyCUDA}"},

   journal={ArXiv e-prints},

   archivePrefix={"arXiv"},

   eprint={1304.5553},

   primaryClass={"cs.SE"},

   keywords={Computer Science – Software Engineering},

   year={2013},

   month={apr},

   adsurl={http://adsabs.harvard.edu/abs/2013arXiv1304.5553K},

   adsnote={Provided by the SAO/NASA Astrophysics Data System}

}

Download Download (PDF)   View View   Source Source   Source codes Source codes

Package:

791

views

High-level scripting languages are in many ways polar opposites to GPUs. GPUs are highly parallel, subject to hardware subtleties, and designed for maximum throughput, and they offer a tremendous advance in the performance achievable for a significant number of computational problems. On the other hand, scripting languages such as Python favor ease of use over computational speed and do not generally emphasize parallelism. PyCUDA is a package that attempts to join the two together. This chapter argues that in doing so, a programming environment is created that is greater than just the sum of its two parts. We would like to note that nearly all of this chapter applies in unmodified form to PyOpenCL, a sister project of PyCUDA, whose goal it is to realize the same concepts as PyCUDA for OpenCL.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

142 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1223 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: