Reduce, Reuse, Recycle (R^3): a Design Methodology for Sparse Matrix Vector Multiplication on Reconfigurable Platforms

Kevin Townsend, Joseph Zambreno
Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA
International Conference on Application-specific Systems, Architectures and Processors (ASAP), 2013
@conference{TowZam13A,

   title={Reduce, Reuse, Recycle (R^3): a Design Methodology for Sparse Matrix Vector Multiplication on Reconfigurable Platforms},

   booktitle={Proceedings of the International Conference on Application-specific Systems, Architectures and Processors (ASAP)},

   year={2013},

   month={June},

   author={Kevin Townsend and Joseph Zambreno}

}

Download Download (PDF)   View View   Source Source   
Sparse Matrix Vector Multiplication (SpMV) is an important computational kernel in many scientific computing applications. Pipelining multiply-accumulate operations shifts SpMV from a computationally bounded kernel to an I/O bounded kernel. In this paper, we propose a design methodology and hardware architecture for SpMV that seeks to utilize system memory bandwidth as efficiently as possible, by Reducing the matrix element storage with on-chip decompression hardware, Reusing the vector data by mixing row and column matrix traversal, and Recycling data with matrix-dependent on-chip storage. Our experimental results with a Convey HC-1/HC-2 reconfigurable computing system indicate that for certain sparse matrices, our R^3 methodology performs twice as fast as previous reconfigurable implementations, and effectively competes against other platforms.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

You must be logged in to post a comment.

* * *

* * *

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 11.4
  • SDK: AMD APP SDK 2.8
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 5.0.35, AMD APP SDK 2.8

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hgpu.org