Color and motion-based particle filter target tracking in a network of overlapping cameras with multi-threading and GPGPU

Francisco Madrigal, Jean-Bernard Hayet
Computer Science Group, Centro de Investigacion en Matematicas. Jalisco S/N. Valenciana, Guanajuato, Gto., Mexico
Acta Universitaria, Vol. 23(1), 2013

   title={Color and motion-based particle filter target tracking in a network of overlapping cameras with multi-threading and GPGPU},

   author={Madrigal, Francisco and Hayet, Jean-Bernard},

   journal={Acta Universitaria},





   publisher={Universidad de Guanajuato}


Download Download (PDF)   View View   Source Source   



This paper describes an efficient implementation of multiple-target multiple-view tracking in video-surveillance sequences. It takes advantage of the capabilities of multiple core Central Processing Units (CPUs) and of graphical processing units under the Compute Unified Device Architecture (CUDA) framework. The principle of our algorithm is 1) in each video sequence, to perform tracking on all persons to track by independent particle filters and 2) to fuse the tracking results of all sequences. Particle filters belong to the category of recursive Bayesian filters. They update a Monte-Carlo representation of the posterior distribution over the target position and velocity. For this purpose, they combine a probabilistic motion model, i.e. prior knowledge about how targets move (e.g. constant velocity) and a likelihood model associated to the observations on targets. At this first level of single video sequences, the multi-threading library Threading Buildings Blocks (TBB) has been used to parallelize the processing of the per target independent particle filters. Afterwards at the higher level, we rely on General Purpose Programming on Graphical Processing Units (generally termed as GPGPU) through CUDA in order to fuse target-tracking data collected on multiple video sequences, by solving the data association problem. Tracking results are presented on various challenging tracking datasets.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1662 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

337 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: