9345

Performance impact of dynamic parallelism on different clustering algorithms

Jeffrey DiMarco, Michela Taufer
Computer and Information Sciences, University of Delaware
DSS11 SPIE Defense, Security, and Sensing Symposium – Modeling and Simulation for Defense Systems and Applications VI, 2013
@article{dimarco2013performance,

   title={Performance impact of dynamic parallelism on different clustering algorithms},

   author={DiMarco, Jeffrey and Taufer, Michela},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

376

views

In this paper, we aim to quantify the performance gains of dynamic parallelism. The newest version of CUDA, CUDA 5, introduces dynamic parallelism, which allows GPU threads to create new threads, without CPU intervention, and adapt to its data. This effectively eliminates the superfluous back and forth communication between the GPU and CPU through nested kernel computations. The change in performance will be measured using two well-known clustering algorithms that exhibit data dependencies: the K-means clustering and the hierarchical clustering. K-means has a sequential data dependence wherein iterations occur in a linear fashion, while the hierarchical clustering has a tree-like dependence that produces split tasks. Analyzing the performance of these data-dependent algorithms gives us a better understanding of the benefits or potential drawbacks of CUDA 5’s new dynamic parallelism feature.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

149 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1236 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: