Exploiting Uniform Vector Instructions for GPGPU Performance, Energy Efficiency, and Opportunistic Reliability Enhancement

Ping Xiang, Yi Yang, Mike Mantor, Norm Rubin, Lisa R. Hsu, Huiyang Zhou
Dept. of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
27th International Conference on Supercomputing (ICS’13), 2013

   title={Exploiting Uniform Vector Instructions for GPGPU Performance, Energy Efficiency, and Opportunistic Reliability Enhancement},

   author={Xiang, Ping and Yang, Yi and Mantor, Mike and Rubin, Norm and Hsu, L and Zhou, Huiyang and Mantor, Michael and Rubin, Norman},

   booktitle={International Conference on Supercomputing},



Download Download (PDF)   View View   Source Source   



State-of-art graphics processing units (GPUs) employ the single-instruction multiple-data (SIMD) style execution to achieve both high computational throughput and energy efficiency. As previous works have shown, there exists significant computational redundancy in SIMD execution, where different execution lanes operate on the same operand values. Such value locality is referred to as uniform vectors. In this paper, we first show that besides redundancy within a uniform vector, different vectors can also have the identical values. Then, we propose detailed architecture designs to exploit both types of redundancy. For redundancy within a uniform vector, we propose to either extend the vector register file with token bits or add a separate small scalar register file to eliminate redundant computations as well as redundant data storage. For redundancy across different uniform vectors, we adopt instruction reuse, proposed originally for CPU architectures, to detect and eliminate redundancy. The elimination of redundant computations and data storage leads to both significant energy savings and performance improvement. Furthermore, we propose to leverage such redundancy to protect arithmetic-logic units (ALUs) and register files against hardware errors. Our detailed evaluation shows that our proposed design has low hardware overhead and achieves performance gains, up to 23.9% and 12.0% on average, along with energy savings, up to 24.8% and 12.6% on average, as well as a 21.1% and 14.1% protection coverage for ALUs and register files, respectively.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1666 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

339 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: