Using RenderScript and RCUDA for Compute Intensive tasks on Mobile Devices: a Case Study

Roelof Kemp, Nicholas Palmer, Thilo Kielmann, Henri Bal, Bastiaan Aarts, Anwar Ghuloum
VU University, De Boelelaan 1081A, Amsterdam, The Netherlands
1st European Workshop on Mobile Engineering (ME’13), 2013


   title={Using RenderScript and RCUDA for Compute Intensive tasks on Mobile Devices: a Case Study},

   author={Kemp, Roelof and Palmer, Nicholas and Kielmann, Thilo and Bal, Henri and Aarts, Bastiaan and Ghuloum, Anwar},



Download Download (PDF)   View View   Source Source   



The processing power of mobile devices is continuously increasing. In this paper we perform a case study in which we assess three different programming models that can be used to leverage this processing power for compute intensive tasks. We use an imaging algorithm and compare a reference implementation of this algorithm based on OpenCV with a multi threaded RenderScript implementation and an implementation based on computation offloading with Remote CUDA. Experiments show that on a modern Tegra 3 quad core device a multi threaded implementation can achieve a 2.2 speed up factor at the same energy cost, whereas computation offloading does neither lead to speed ups nor energy savings.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1481435451
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1481435451
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => KbIAtPwgVsWzzpK/saI2Yw6waeU=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2082 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: