9522

Towards shared memory consistency models for GPUs

Tyler Sorensen
The University of Utah
The University of Utah, 2013
@phdthesis{sorensen2013towards,

   title={Towards shared memory consistency models for GPUs},

   author={Sorensen, Tyler},

   year={2013},

   school={The University of Utah}

}

Download Download (PDF)   View View   Source Source   

372

views

With the widespread use of GPUs, it is important to ensure that programmers have a clear understanding of their shared memory consistency model i.e. what values can be read when issued concurrently with writes. While memory consistency has been studied for CPUs, GPUs present very different memory and concurrency systems and have not been well studied. We propose a collection of litmus tests that shed light on interesting visibility and ordering properties. These include classical shared memory consistency model properties, such as coherence and write atomicity, as well as GPU specific properties e.g. memory visibility differences between intra and inter block threads. The results of the litmus tests are determined by feedback from industry experts, the limited documentation available and properties common to all modern multi-core systems. Some of the behaviors remain unresolved. Using the results of the litmus tests, we establish a formal state transition model using intuitive data structures and operations. We implement our model in the Murphi modeling language and verify the initial litmus tests. As a preliminary study, we restrict our model to loads and stores across global and shared memory along with two of the memory fences given in the NVIDIA PTX, thread fence and thread fence block. Finally, we show real world examples of code that make assumptions about the GPU shared memory consistency model that are inconsistent with our proposed model.
VN:F [1.9.22_1171]
Rating: 5.0/5 (1 vote cast)
Towards shared memory consistency models for GPUs, 5.0 out of 5 based on 1 rating

* * *

* * *

Like us on Facebook

HGPU group

128 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1193 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: