9528

A Reliable Throughput Gain on GPUs

Paolo Rech, Luigi Carro
Universidade Federal do Rio Grande do Sul – Porto Alegre/Brazil
Second Workshop on Manufacturable and Dependable Multicore Architectures at Nanoscale (MEDIAN’13), 2013
@article{rech2013reliable,

   title={A Reliable Throughput Gain on GPUs},

   author={Rech, Paolo and Carro, Luigi},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

636

views

Graphic Processing Units (GPUs) are widely employed in many applications in which high computing capabilities are required and parallelism can be fruitfully exploited. A higher amount of parallel threads bring to the GPU a higher throughput, but may also increase the code neutron-induced error rate. The GPUs sensitivity depends not only on the code throughput, but also on the chosen threads distribution. We experimentally evaluate how the neutroninduced output error rate of some benchmark codes varies when their throughput is increased. Experiments found that increasing the block size minimizes the application neutron-induced output error rate.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Recent source codes

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1472149544
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1472149544
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => lnyx9qDd0ezY0MgDHX6T7dl7sMw=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: