OCLoptimizer: An Iterative Optimization Tool for OpenCL

Jorge F. Fabeiro, Diego Andrade, Basilio B. Fraguela
Computer Architecture Group, University of A Coruna, Spain
Proceedings of the International Conference on Computational Science (ICCS), 2013

   title={OCLoptimizer: An Iterative Optimization Tool for OpenCL},

   author={Fabeiro, Jorge F and Andrade, Diego and Fraguela, Basilio B},

   journal={Procedia Computer Science},






Download Download (PDF)   View View   Source Source   



Nowadays, computers include several computational devices with parallel capacities, such as multicore processors and Graphic Processing Units (GPUs). OpenCL enables the programming of all these kinds of devices. An OpenCL program consists of a host code which discovers the computational devices available in the host system and it queues up commands to the devices, and the kernel code which defines the core of the parallel computation executed in the devices. This work addresses two of the most important problems faced by an OpenCL programmer: (1) hosts codes are quite verbose but they can be automatically generated if some parameters are known; (2) OpenCL codes that are hand-optimized for a given device do not get necessarily a good performance in a different one. This paper presents a source-to-source iterative optimization tool, called OCLoptimizer, that aims to generate host codes automatically and to optimize OpenCL kernels taking as inputs an annotated version of the original kernel and a configuration file. Iterative optimization is a well-known technique which allows to optimize a given code by exploring different configuration parameters in a systematic manner. For example, we can apply tiling on one loop and the iterative optimizer would select the optimal tile size by exploring the space of possible tile sizes. The experimental results show that the tool can automatically optimize a set of OpenCL kernels for multicore processors.
VN:F [1.9.22_1171]
Rating: 5.0/5 (2 votes cast)
OCLoptimizer: An Iterative Optimization Tool for OpenCL, 5.0 out of 5 based on 2 ratings

* * *

* * *

Follow us on Twitter

HGPU group

1548 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

275 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: