9587

Real-space density functional theory on graphical processing units: computational approach and comparison to Gaussian basis set methods

Xavier Andrade, Alan Aspuru-Guzik
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States
arXiv:1306.2953 [physics.comp-ph], (12 Jun 2013)
@article{2013arXiv1306.2953A,

   author={Andrade}, X. and {Aspuru-Guzik}, A.},

   title={"{Real-space density functional theory on graphical processing units: computational approach and comparison to Gaussian basis set methods}"},

   journal={ArXiv e-prints},

   archivePrefix={"arXiv"},

   eprint={1306.2953},

   primaryClass={"physics.comp-ph"},

   keywords={Physics – Computational Physics, Condensed Matter – Other Condensed Matter},

   year={2013},

   month={jun},

   adsurl={http://adsabs.harvard.edu/abs/2013arXiv1306.2953A},

   adsnote={Provided by the SAO/NASA Astrophysics Data System}

}

Download Download (PDF)   View View   Source Source   Source codes Source codes

Package:

719

views

We discuss the application of graphical processing units (GPUs) to accelerate real-space density functional theory (DFT) calculations. To make our implementation efficient, we have developed a scheme to expose the data parallelism available in the DFT approach; this is applied to the different procedures required for a real-space DFT calculation. We present results for current-generation GPUs from AMD and Nvidia, which show that our scheme, implemented in the free code OCTOPUS, can reach a sustained performance of up to 90 GFlops for a single GPU, representing an important speed-up when compared to the CPU version of the code. Moreover, for some systems our implementation can outperform a GPU Gaussian basis set code, showing that the real-space approach is a competitive alternative for DFT simulations on GPUs.
VN:F [1.9.22_1171]
Rating: 5.0/5 (1 vote cast)
Real-space density functional theory on graphical processing units: computational approach and comparison to Gaussian basis set methods, 5.0 out of 5 based on 1 rating

Recent source codes

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1472033573
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1472033573
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => 3nZIgDfuGxMS1PUQx+wNT/Al/ro=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1965 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: