Multicore and GPU Parallelization of Neural Networks for Face Recognition

Altaf Ahmad Huqqani, Erich Schikuta, Sicen Ye, Peng Chen
University of Vienna, Faculty of Computer Science, Wahringer Strae 29, A-1090 Vienna, Austria
Procedia Computer Science, Volume 18, Pages 349-358, 2013

   title={Multicore and GPU Parallelization of Neural Networks for Face Recognition},

   author={Huqqani, Altaf Ahmad and Schikuta, Erich and Ye, Sicen and Chen, Peng},

   journal={Procedia Computer Science},






Download Download (PDF)   View View   Source Source   



Training of Artificial Neural Networks for large data sets is a time consuming task. Various approaches have been proposed to reduce the efforts, many of them by applying parallelization techniques. In this paper we develop and analyze two novel parallel training approaches for Backpropagation neural networks for face recognition. We focus on two specific parallelization environments, using on the one hand OpenMP on a conventional multithreaded CPU and CUDA on a GPU. Based on our findings we give guidelines for the efficient parallelization of Backpropagation neural networks on multicore and GPU architectures. Additionally, we present a traversal method finding the best combination of learning rate and momentum term by varying the number of hidden neurons supporting the parallelization efforts.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1513 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

263 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: