9596

Performance Analysis on Energy Efficient High-Performance Architectures

Roman Iakymchuk, Francois Trahay
Institut Mines-Telecom – Telecom SudParis, 9 Rue Charles Fourier, 91000 Evry France
2nd International Conference on Cluster Computing (CC’13), 2013

@article{iakymchuk2013performance,

   title={Performance Analysis on Energy Efficient High-Performance Architectures},

   author={Iakymchuk, Roman and Trahay, Fran{c{c}}ois},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

915

views

With the shift in high-performance computing (HPC) towards energy efficient hardware architectures such as accelerators (NVIDIA GPUs) and embedded systems (ARM processors), arose the need to adapt existing performance analysis tools to these new systems. We present EZTrace – a performance analysis framework for parallel applications. EZTrace relies on several core components, in particular on a mechanism for instrumenting functions, a lightweight tool for recording events, and a generic interface for writing traces. To support EZTrace on energy efficient HPC systems, we developed a CUDA module and ported EZTrace to ARM processors. The evaluation on a suite of the standard computation kernels show that EZTrace allows to analyze HPC applications executing on such systems with the low performance overhead.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1481255214
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1481255214
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => IUAdrfpICM2tHBaDQsD0rL9k0a4=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2081 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: