9601

GPU Programming in Rust: Implementing High Level Abstractions in a Systems Level Language

Eric Holk, Milinda Pathirage, Arun Chauhan, Andrew Lumsdaine, Nicholas D. Matsakis
School of Informatics and Computing, Indiana University, Bloomington, IN 47405
Workshop on High-level Parallel Programming Models and Supportive Environments (HIPS 2013), 2013
@article{holk2013gpu,

   title={GPU Programming in Rust: Implementing High Level Abstractions in a Systems Level Language},

   author={Holk, Eric and Pathirage, Milinda and Chauhan, Arun and Lumsdaine, Andrew and Matsakis, Nicholas D},

   year={2013}

}

Download Download (PDF)   View View   Source Source   Source codes Source codes

Package:

884

views

Graphics processing units (GPUs) have the potential to greatly accelerate many applications, and yet programming models still remain too low level. Many language-based solutions to date have addressed this problem by creating embedded domain-specific languages that compile to CUDA or OpenCL. These targets are meant for human programmers and thus are less than ideal compilation targets. LLVM recently gained a compilation target for PTX, NVIDIA’s low-level virtual instruction set for GPUs. This lower-level representation is more expressive than CUDA and OpenCL, making it easier to support advanced language features such as abstract data types or even certain closures. We demonstrate the effectiveness of this approach by extending the Rust programming language with support for GPU kernels. At the most basic level, our extensions provide functionality that is similar to that of CUDA. However, our approach seamlessly integrates with many of Rust’s features, making it easy to build a library of ergonomic abstractions for data parallel computing. This approach provides the expressiveness of a high level GPU language like Copperhead or Accelerate, yet also provides the programmer the power needed to create new abstractions when those we have provided are insufficient.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

140 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1217 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: