9605

Parallelizing General Histogram Application for CUDA Architectures

Ugljesa Milic, Isaac Gelado, Nikola Puzovic, Alex Ramirez, Milo Tomasevic
Barcelona Supercomputing Center, Centro Nacional de Supercomputacion, Barcelona, Spain
IEEE International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, 2013
@article{milic2013parallelizing,

   title={Parallelizing General Histogram Application for CUDA Architectures},

   author={Milic, Ugljesa and Gelado, Isaac and Puzovic, Nikola and Ramirez, Alex and Tomasevic, Milo},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

584

views

Histogramming is a tool commonly used in data analysis. Although its serial version is simple to implement, providing an efficient and scalable way to parallelize it can be challenging. This especially holds in case of platforms that contain one or several massively parallel devices like CUDAcapable GPUs due to issues with domain decomposition, use of global memory and similar. In this paper we compare two approaches for implementing general purpose histogramming on GPUs. The first algorithm is based on private copies of bin counters stored in shared memory for each block of threads. The second one uses the Thrust library to sort the input elements and then to search for upper bounds according to bin widths. For both algorithms we analyze how the speedup over the sequential version depends on the size of input collection, number of bins, and the type and distribution of input elements. We also implement overlapping of data transfers between host CPU and CUDA device with kernel execution. For both algorithms we analyze the pros and cons in detail. For example, privatization strategy can be up to 2x faster than sort-search with realistic inputs, but can only support a limited number of bins. On the other hand, sort-search strategy has about 50% higher speedup than privatization when we use characters as input and can support unlimited number of bins. Finally, we perform an exploration to determine the optimal algorithm depending on the characteristics and values of input parameters.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

150 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1250 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: