9623

libCudaOptimize: an Open Source Library of GPU-based Metaheuristics

Youssef S.G. Nashed, Roberto Ugolotti, Pablo Mesejo, Stefano Cagnoni
Dept. of Information Engineering, University of Parma, Italy
Fourteenth international conference on Genetic and evolutionary computation conference companion (GECCO Companion ’12), 2012
@inproceedings{nashed2012libcudaoptimize,

   title={libCudaOptimize: an open source library of GPU-based metaheuristics},

   author={Nashed, Youssef SG and Ugolotti, Roberto and Mesejo, Pablo and Cagnoni, Stefano},

   booktitle={Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference companion},

   pages={117–124},

   year={2012},

   organization={ACM}

}

Evolutionary Computation techniques and other metaheuristics have been increasingly used in the last years for solving many real-world tasks that can be formulated as optimization problems. Among their numerous strengths, a major one is their natural predisposition to parallelization. In this paper, we introduce libCudaOptimize, an open source library which implements some metaheuristics for continuous optimization: presently Particle Swarm Optimization, Differential Evolution, Scatter Search, and Solis&Wets local search. This library allows users either to apply these metaheuristics directly to their own fitness function or to extend it by implementing their own parallel optimization techniques. The library is written in CUDA-C to make extensive use of parallelization, as allowed by Graphics Processing Units. After describing the library, we consider two practical case studies: the optimization of a fitness function for the automatic localization of anatomical brain structures in histological images, and the parallel implementation of Simulated Annealing as a new module, which extends the library while keeping code compatibility with it, so that the new method can be readily available for future use within the library as an alternative optimization technique.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

169 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1276 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: