9671

Point-wise Adaptive Filtering for Fast Monte Carlo Noise Reduction

Jie Guo, Jingui Pan
State Key Lab for Novel Software Technology, Nanjing, China
Pacific Conference on Computer Graphics and Applications – Short Papers, 2012
@inproceedings{guo2012point,

   title={Point-wise Adaptive Filtering for Fast Monte Carlo Noise Reduction},

   author={Guo, Jie and Pan, Jingui},

   booktitle={Pacific Graphics Short Papers},

   pages={17–22},

   year={2012},

   organization={The Eurographics Association}

}

Download Download (PDF)   View View   Source Source   

625

views

Monte Carlo based photorealistic image synthesis has proven to be one of the most flexible and powerful rendering techniques, but is plagued with undesirable artifacts known as Monte Carlo noise. We present an adaptive filtering method designed for Monte Carlo rendering systems that counteracts noise while respecting sharp features. The filter operates as a post-process on a noisy image augmented with three screen-space geometric attribute buffers, and by using a point-wise adaptive (varying window size) filtering kernel, this method is able to reinforce the preservation of important scene reflected edges, in less time. Comparative results demonstrate the simplicity and efficiency of our method, which makes it a feasible and robust solution for smoothing noisy images generated by Monte Carlo rendering techniques. CUDA implementation also makes the algorithm potentially practical for interactive Monte Carlo rendering in the near future.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1480957277
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1480957277
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => QmbQT5j7mELf6Xpah7VvHioMT7I=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2078 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: