9672

GPU-CC: a Reconfigurable GPU Architecture with Communicating Cores

Gert-Jan van den Braak, Henk Corporaal
Dept. of Electrical Engineering, Electronic Systems Group, Eindhoven University of Technology, The Netherlands
16th International Workshop on Software and Compilers for Embedded Systems (M-SCOPES ’13), 2013
@inproceedings{van2013gpu,

   title={GPU-CC: a reconfigurable GPU architecture with communicating cores},

   author={van den Braak, Gert-Jan and Corporaal, Henk},

   booktitle={Proceedings of the 16th International Workshop on Software and Compilers for Embedded Systems},

   pages={86–89},

   year={2013},

   organization={ACM}

}

Download Download (PDF)   View View   Source Source   

306

views

GPUs have evolved to programmable, energy efficient compute accelerators for massively parallel applications. Still, compute power is lost in many applications because of cycles spent on data movement and control instead of computations on actual data. Additional cycles can be lost as well on pipeline stalls due to long latency operations. To improve performance and energy efficiency, we introduce GPU-CC: a reconfigurable GPU architecture with communicating cores. It is based on a contemporary GPU, which can still be used as such, but also has the ability to reorganize the cores of a GPU in a reconfigurable network. In GPU-CC data movement and control is implicit in the configuration of the communication network. Additionally each core executes a fixed instruction, reducing instruction decode count and increasing energy efficiency. We show a large performance potential for GPU-CC, e.g. 1.9x and 2.4x for a 3×3 and 5×5 convolution application. The hardware cost of GPU-CC is mainly determined by the buffers in the added network, which amounts to 12.4% of extra memory space.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

136 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1204 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: