High-Performance Computing using GPUs

Rakesh Kumar K. N, Hemalatha V, Shivakumar K. M, Basappa B. Kodada
International Journal of Advanced Research in Computer Engineering and Technology (IJARCET), Volume 2, Issue 6, 2013

   title={High-Performance Computing using GPUs},

   author={Rakesh Kumar, K. N. and Hemalatha, V. and Shivakumar, K. M. and Kodada, Basappa B.},



Download Download (PDF)   View View   Source Source   



In the last few years, emergence of High-Performance Computing has largely influenced computer technology in the field of financial analytics, data mining, image/signal processing, simulations and modeling etc. Multi-threading, hyper-threading and other parallel programming technologies, multicore machines, clusters etc. have helped achieve high performance with high availability and high throughput. However, hybrid clusters have been gaining increased popularity these days due to the performance efficient, accelerated computation service they provide with the help of accelerators like GPUs (Graphics Processing Units), FPGAs (Field Programmable Gate Arrays), DSPs (Digital Signal Processors) etc. Amongst the accelerators, GPUs are most widely used for general purpose computations which require high speed and high performance as GPUs are highly parallel, multithreaded, manycore processors with tremendous computational power. In this paper, the hardware architecture of GPUs is discussed with light on how it is favorable to be used for general purpose computations. The programming models which are generally used these days for GPU computing and comparison of those models are discussed. Also a comparison of GPUs and CPUs in terms of both architecture and performance with the help of a benchmark is made and finally concluded with results.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1584 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

299 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: