Adaptation of algorithms for underwater sonar data processing to GPU-based systems

Patricia Sundin
Department of Computer and Information Science, The Institute of Technology, Linkoping University
Linkoping University, 2013

   title={Adaptation of algorithms for underwater sonar data processing to GPU-based systems},

   author={Sundin, Patricia},




Download Download (PDF)   View View   Source Source   



In this master thesis, algorithms for acoustic simulations in underwater environments are ported for GPU processing. The GPU parallel computing platforms used are CUDA, OpenCL and SkePU. The purpose of this master thesis is to adapt and evaluate the ported algorithms’ performance on two modern NVIDIA GPUs, Tesla K20 and Quadro K5000. Several optimizations, described in existing literature for GPU processing (e.g. usage of shared memory, coalesced memory accesses), are implemented and multiple versions of each algorithm are created to study their trade-offs. Evaluation on two GPUs showed that different versions of the same algorithm have different performance characteristic and execution with the best performing version can give better performance than the original algorithm executing on 8 CPUs. A performance comparison between CUDA, OpenCL and SkePU versions of one algorithm is also made.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1658 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

335 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: