9697

Exploiting multi-level parallelism in streaming applications for heterogeneous platforms with GPUs

Ana Balevic
Leiden Institute of Advanced Computer Science (LIACS), and Leiden Embedded Research Center, Faculty of Science, Leiden University
Leiden University, 2013
@phdthesis{balevic2013exploiting,

   title={Exploiting multi-level parallelism in streaming applications for heterogeneous platforms with GPUs},

   author={Balevic, Ana and others},

   year={2013},

   school={Leiden Institute of Advanced Computer Science (LIACS), and Leiden Embedded Research Center, Faculty of Science, Leiden University}

}

Download Download (PDF)   View View   Source Source   

317

views

Heterogeneous computing platforms support the traditional types of parallelism, such as e.g., instruction-level, data, task, and pipeline parallelism, and provide the opportunity to exploit a combination of different types of parallelism at different platform levels. The architectural diversity of platform components makes tapping into the platform potential a challenging programming task. This thesis makes an important step in this direction by introducing a novel methodology for automatic generation of structured, multi-level parallel programs from sequential applications. We introduce a novel hierarchical intermediate program representation (HiPRDG) that captures the notions of structure and hierarchy in the polyhedral model used for compile-time program transformation and code generation. Using the HiPRDG as the starting point, we present a novel method for generation of multi-level programs (MLPs) featuring different types of parallelism, such as task, data, and pipeline parallelism. Moreover, we introduce concepts and techniques for data parallelism identification, GPU code generation, and asynchronous data-driven execution on heterogeneous platforms with efficient overlapping of host-accelerator communication and computation. By enabling the modular, hybrid parallelization of program model components via HiPRDG, this thesis opens the door for highly efficient tailor-made parallel program generation and auto-tuning for next generations of multi-level heterogeneous platforms with diverse accelerators.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

151 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1252 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: