9729

GPU Accelerated Fluid Flow Computations Using the Latice Boltzmann Method

C. Nita, L.M. Itu, C. Suciu
Dept. of Automation and Information Technology, Transilvania University of Brasov
Bulletin of the Transilvania University of Brasov, Series I: Engineering Sciences, Vol. 6 (55) No. 1, 2013

@article{nictua2013gpu,

   title={GPU ACCELERATED FLUID FLOW COMPUTATIONS USING THE LATICE BOLTZMANN METHOD},

   author={NI{c{T}}{u{A}}, C and ITU, LM and SUCIU, C},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

627

views

We propose a numerical implementation based on a Graphics Processing Unit (GPU) for the acceleration of the execution time of the Lattice Boltzmann Method. The performance analysis is based on three three-dimensional benchmark applications: Poisseuille flow, lid-driven cavity flow and flow in an elbow shaped domain. Three different, recently released GPU cards are considered for the parallel implementation. To correctly evaluate the speed-up potential of the GPUs, both single-core and multi-core CPU based implementations are used. The results indicate that the GTX 680 GPU card leads to the best performance, with a speed-up ranging between 6.7 and 14.35 over the multi-core CPU based implementation, depending on the application and on the grid density.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1481127649
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1481127649
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => LZZgEDgLpiR0FQPm1qA+dcjYNqY=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2079 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: